Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Abdom Radiol (NY) ; 48(11): 3343-3352, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37495746

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the sixth most common cancer, and the third leading cause of cancer death worldwide. Studies have shown that increased angiopoietin-2 (Ang-2) expression relative to Ang-1 expression in tumors is associated with a poor prognosis.The purpose of this study was to investigate the efficacy of predicting Ang-2 expression in HCC by preoperative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)-based radiomics. METHODS: The data of 52 patients with HCC who underwent surgical resection in our hospital were retrospectively analyzed. Ang-2 expression in HCC was analyzed by immunohistochemistry. All patients underwent preoperative upper abdominal DCE-MRI and intravoxel incoherent motion diffusion-weighted imaging scans. Radiomics features were extracted from the early and late arterial and portal phases of axial DCE-MRI. Univariate analysis and least absolute shrinkage and selection operator (LASSO) was performed to select the optimal radiomics features for analysis. A logistic regression analysis was performed to establish a DCE-MRI radiomics model, clinic-radiologic (CR) model and combined model integrating the radiomics score with CR factors. The stability of each model was verified by 10-fold cross-validation. Receiver operating characteristic (ROC) curve analysis, calibration curve analysis and decision curve analysis (DCA) were employed to evaluate these models. RESULTS: Among the 52 HCC patients, high Ang-2 expression was found in 30, and low Ang-2 expression was found in 22. The areas under the ROC curve (AUCs) for the radiomics model, CR model and combined model for predicting Ang-2 expression were 0.800, 0.874, and 0.933, respectively. The DeLong test showed that there was no significant difference in the AUC between the radiomics model and the CR model (p > 0.05) but that the AUC for the combined model was significantly greater than those for the other 2 models (p < 0.05). The DCA results showed that the combined model outperformed the other 2 models and had the highest net benefit. CONCLUSION: The DCE-MRI-based radiomics model has the potential to predict Ang-2 expression in HCC patients; the combined model integrating the radiomics score with CR factors can further improve the prediction performance.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Angiopoietina-2 , Estudos Retrospectivos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Imageamento por Ressonância Magnética
2.
Redox Biol ; 57: 102509, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36302319

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease characterized by excessive proliferation of fibroblasts and excessive accumulation of extracellular matrix (ECM). Ferroptosis is a novel form of cell death characterized by the lethal accumulation of iron and lipid peroxidation, which is associated with many diseases. Our study addressed the potential role played by ferroptosis and iron accumulation in the progression of pulmonary fibrosis. We found that the inducers of pulmonary fibrosis and injury, namely, bleomycin (BLM) and lipopolysaccharide (LPS), induced ferroptosis of lung epithelial cells. Both the ferroptosis inhibitor liproxstatin-1 (Lip-1) and the iron chelator deferoxamine (DFO) alleviated the symptoms of pulmonary fibrosis induced by bleomycin or LPS. TGF-ß stimulation upregulated the expression of transferrin receptor protein 1 (TFRC) in the human lung fibroblast cell line (MRC-5) and mouse primary lung fibroblasts, resulting in increased intracellular Fe2+, which promoted the transformation of fibroblasts into myofibroblasts. Mechanistically, TGF-ß enhanced the expression and nuclear localization of the transcriptional coactivator tafazzin (TAZ), which combined with the transcription factor TEA domain protein (TEAD)-4 to promote the transcription of TFRC. In addition, elevated Fe2+ failed to induce the ferroptosis of fibroblasts, which might be related to the regulation of iron export and lipid metabolism. Finally, we specifically knocked out TFRC expression in fibroblasts in mice, and compared with those in the control mice, the symptoms of pulmonary fibrosis were reduced in the knockout mice after bleomycin induction. Collectively, these findings suggest the therapeutic potential of ferroptosis inhibitors and iron chelators in treating pulmonary fibrosis.

3.
J Food Biochem ; 46(12): e14403, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36121702

RESUMO

Walnut diaphragm is defined as a dry wood septum located between the walnut shell and kernel. In this work, seven phenolic compounds from walnut diaphragm were purified and characterized, and their antioxidant activities and mechanisms of hypoglycemia were investigated. Compounds 1-7 were tested for DPPH, ABTS scavenging ability, and FRAP assay to evaluate the antioxidant activity. α-Amylase inhibition assay was introduced to assess the hypoglycemic activity, and the mechanism was investigated by kinetic analysis, CD spectrum, and molecular docking. Compound 6 showed the strongest antioxidant ability, while compound 1 exhibited the strongest inhibition of α-amylase by changing the secondary structure of α-amylase in a mixed competitive inhibition mode. Molecular docking test predicted that the tetrahydropyran part in compound 1 may contribute to its hypoglycemic effect. This study furnishes a new theoretical reference for the utilization and development of walnut diaphragm into a health food with antioxidant and hypoglycemic properties. PRACTICAL APPLICATIONS: The finding of this research may serve as a basis for the subsequent development of walnut diaphragm into instant tea-based health food or added to other food carriers to achieve auxiliary antioxidant and hypoglycemic effects. This study revealed that polyphenolic components were the material basis for the antioxidant and hypoglycemic effects of walnut diaphragm, which could be identified as landmark chemical components for controlling quality standards in the development of walnut diaphragm, thus accelerating the research process of quality standards for walnut diaphragm-related products. Furthermore, the studies on the mechanism of hypoglycemic activity supply more credible data to support the development of walnut diaphragm into a safe and consumer-friendly health food. With abundant resources and clear efficacy, walnut diaphragm has great development prospect and application value.


Assuntos
Antioxidantes , Juglans , Antioxidantes/química , Juglans/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Diafragma/química , Diafragma/metabolismo , Simulação de Acoplamento Molecular , Cinética , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fenóis/análise , alfa-Amilases/metabolismo
4.
Nat Commun ; 13(1): 676, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115492

RESUMO

Ferroptosis is a nonapoptotic cell death process that requires cellular iron and the accumulation of lipid peroxides. In progressive rheumatoid arthritis (RA), synovial fibroblasts proliferate abnormally in the presence of reactive oxygen species (ROS) and elevated lipid oxidation. Here we show, using a collagen-induced arthritis (CIA) mouse model, that imidazole ketone erastin (IKE), a ferroptosis inducer, decreases fibroblast numbers in the synovium. Data from single-cell RNA sequencing further identify two groups of fibroblasts that have distinct susceptibility to IKE-induced ferroptosis, with the ferroptosis-resistant fibroblasts associated with an increased TNF-related transcriptome. Mechanistically, TNF signaling promotes cystine uptake and biosynthesis of glutathione (GSH) to protect fibroblasts from ferroptosis. Lastly, low dose IKE together with etanercept, a TNF antagonist, induce ferroptosis in fibroblasts and attenuate arthritis progression in the CIA model. Our results thus imply that the combination of TNF inhibitors and ferroptosis inducers may serve as a potential candidate for RA therapy.


Assuntos
Artrite Experimental/prevenção & controle , Artrite Reumatoide/prevenção & controle , Ferroptose/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Imidazóis/farmacologia , Cetonas/farmacologia , Piperazinas/farmacologia , Inibidores do Fator de Necrose Tumoral/farmacologia , Animais , Artrite Experimental/genética , Artrite Experimental/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Quimioterapia Combinada , Etanercepte/farmacologia , Etanercepte/uso terapêutico , Fibroblastos/citologia , Fibroblastos/metabolismo , Glutationa/metabolismo , Humanos , Imidazóis/uso terapêutico , Cetonas/uso terapêutico , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Piperazinas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Membrana Sinovial/citologia , Inibidores do Fator de Necrose Tumoral/uso terapêutico
5.
Genes Dis ; 8(3): 364-372, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33997183

RESUMO

Circular RNAs are a large class of noncoding RNAs. Smad5 functions in cell differentiation, cell proliferation and metastasis. It has been reported that lnc-Smad5 can inhibit the proliferation of diffuse large B cell lymphoma. However, the function of circ-Smad5 has not yet been reported. Lentivirus vectors were constructed to establish circ-Smad5 upregulated and circ-Smad5 downregulated cell models. A CCK-8 assay was used to detect the proliferation of JB6 cells. FACS was used to analyze the cell cycle in the cell models. Western blot, immunofluorescence staining and TOP/FOP flash dual luciferase activity assays were used to determine the activity of the Wnt signaling pathway. The results revealed that the expression level of circ-Smad5 in JB6 cells was significantly lower than the expression level of linearized-Smad5. Compared with the control group, the percentage of S phase cells and the expression level of cyclin D1 protein were significantly higher in the sh-circ-Smad5 group. In the sh-circ-Smad5 group, ß-catenin and LEF-1 were significantly increased, p-ß-catenin was significantly decreased, and the relative activity of the TOP/FOP reporter gene was higher compared to the control group levels. These phenomena could be reversed by treating with Wnt signaling inhibitor PNU-74654. We conclude that the circ-Smad5 retards the proliferation and the cell cycle progression of JB6 cells. Thus, circ-Smad5 may function by inhibiting the activation of Wnt/ß-catenin/Lef 1 signaling, which inhibits the expression of cyclin D1. To the best of our knowledge, we are the first to report the function of circ-Smad5.

6.
Front Cell Dev Biol ; 9: 751593, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977009

RESUMO

Ferroptosis, a form of programmed cell death process driven by iron-dependent lipid peroxidation, plays an important role in tumor suppression. Although previous study showed that intracellular Merlin-Hippo signaling suppresses ferroptosis of epithelial tumor cells through the inactivation of YAP signaling, it remains elusive if the proto-oncogenic transcriptional co-activator YAP could serve as a potential biomarker to predict cancer cell response to ferroptosis-inducing therapies. In this study, we show that both total YAP staining and nuclear YAP staining were more prevalent in HCC tissues than in nontumorous regions. Compared to low-density HCC cells, high-density cells showed decreased nuclear localization of YAP and conferred significant resistance to ferroptosis. Oncogenic activation of YAP signaling by overexpression of YAP(S127A) mutant sensitized ferroptosis of HCC cells cultured in confluent density or in the 3D tumor spheroid model. Furthermore, we validated the lipoxygenase ALOXE3 as a YAP-TEAD target gene that contributed to YAP-promoted ferroptosis. Overexpression of ALOXE3 effectively increased the vulnerability of HCC cells to ferroptotic cell death. In an orthotopic mouse model of HCC, genetic activation of YAP rendered HCC cells more susceptible to ferroptosis. Finally, an overall survival assay further revealed that both a high expression of YAP and a low expression of GPX4 were correlated with increased survival of HCC patients with sorafenib treatment, which had been proven to be an inducer for ferroptosis by inhibition of the xc-amino acid antiporter. Together, this study unveils the critical role of intracellular YAP signaling in dictating ferroptotic cell death; it also suggests that pathogenic alterations of YAP signaling can serve as biomarkers to predict cancer cell responsiveness to future ferroptosis-inducing therapies.

8.
Theranostics ; 7(17): 4071-4086, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29158811

RESUMO

Chemotherapy-resistant cancer stem cells (CSCs) are a major obstacle to the effective treatment of many forms of cancer. To overcome CSC chemo-resistance, we developed a novel system by conjugating a CSC-targeting EpCAM aptamer with doxorubicin (Apt-DOX) to eliminate CSCs. Incubation of Apt-DOX with colorectal cancer cells resulted in high concentration and prolonged retention of DOX in the nuclei. Treatment of tumour-bearing xenograft mice with Apt-DOX resulted in at least 3-fold more inhibition of tumour growth and longer survival as well as a 30-fold lower frequency of CSC and a prolonged longer tumourigenic latency compared with those receiving the same dose of free DOX. Our data demonstrate that a CSC-targeting aptamer is able to transform a conventional chemotherapeutic agent into a CSC-killer to overcome drug resistance in solid tumours.


Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Molécula de Adesão da Célula Epitelial/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Relação Dose-Resposta a Droga , Doxorrubicina/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Feminino , Células HT29 , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos SCID , Polietilenoglicóis/química , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Sci Rep ; 7(1): 5898, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724889

RESUMO

The development of chemoresistance and inability in elimination of cancer stem cells are among the key limitations of cancer chemotherapy. Novel molecular therapeutic strategies able to overcome such limitations are urgently needed for future effective management of cancer. In this report, we show that EpCAM-aptamer-guided survivin RNAi effectively downregulated survivin both in colorectal cancer cells in vitro and in a mouse xenograft model for colorectal cancer. When combined with the conventional chemotherapeutic agents, the aptamer-guided survivin RNAi was able to enhance the sensitivity towards 5-FU or oxaliplatin in colorectal cancer stem cells, increase apoptosis, inhibit tumour growth and improve the overall survival of mice bearing xenograft colorectal cancer. Our results indicate that survivin is one of the key players responsible for the innate chemoresistance of colorectal cancer stem cells. Thus, aptamer-mediated targeting of survivin in cancer stem cells in combination with chemotherapeutic drugs constitutes a new avenue to improve treatment outcome in oncologic clinics.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Neoplasias Colorretais/patologia , Fluoruracila/farmacologia , Células-Tronco Neoplásicas/patologia , Interferência de RNA , Survivina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Regulação para Baixo/efeitos dos fármacos , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo
10.
Mol Ther ; 22(5): 964-73, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24496383

RESUMO

The KRAS mutation is present in ~20% of lung cancers and has not yet been effectively targeted for therapy. This mutation is associated with a poor prognosis in non-small-cell lung carcinomas (NSCLCs) and confers resistance to standard anticancer treatment drugs, including epidermal growth factor receptor tyrosine kinase inhibitors. In this study, we exploited a new therapeutic strategy based on the synthetic lethal interaction between cyclin-dependent kinase 4 (CDK4) downregulation and the KRAS mutation to deliver micellar nanoparticles (MNPs) containing small interfering RNA targeting CDK4 (MNPsiCDK4) for treatment in NSCLCs harboring the oncogenic KRAS mutation. Following MNPsiCDK4 administration, CDK4 expression was decreased, accompanied by inhibited cell proliferation, specifically in KRAS mutant NSCLCs. However, this intervention was harmless to normal KRAS wild-type cells, confirming the proposed mechanism of synthetic lethality. Moreover, systemic delivery of MNPsiCDK4 significantly inhibited tumor growth in an A549 NSCLC xenograft murine model, with depressed expression of CDK4 and mutational KRAS status, suggesting the therapeutic promise of MNPsiCDK4 delivery in KRAS mutant NSCLCs via a synthetic lethal interaction between KRAS and CDK4.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Quinase 4 Dependente de Ciclina/genética , Terapia Genética , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/genética , Proteínas ras/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/terapia , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Técnicas de Transferência de Genes , Humanos , Camundongos , Nanopartículas/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras) , RNA Interferente Pequeno/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Biochem Biophys Res Commun ; 421(3): 501-7, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22521889

RESUMO

A series of inhibitors of d-amino acid oxidase (DAAO) are specific in blocking chronic pain, including formalin-induced tonic pain, neuropathic pain and bone cancer pain. This study used RNA interference technology to further validate the notion that spinal DAAO mediates formalin-induced pain. To target DAAO, a siRNA/DAAO formulated in polyetherimide (PEI) complexation and a shRNA/DAAO (shDAAO, with the same sequence as siRNA/DAAO after intracellular processing) expressed in recombinant adenoviral vectors were designed. The siRNA/DAAO was effective in blocking DAAO expression in NRK-52E rat kidney tubule epithelial cells, compared to the nonspecific oligonucleotides. Furthermore, multiple-daily intrathecal injections of both siRNA/DAAO and Ad-shDAAO for 7 days significantly inhibited spinal DAAO expression by 50-80% as measured by real-time quantitative PCR and Western blot, and blocked spinal DAAO enzymatic activity by approximately 60%. Meanwhile, both siRNA/DAAO and Ad-shDAAO prevented formalin-induced tonic phase pain by approximately 60%. Multiple-daily intrathecal injections of siRNA/DAAO and Ad-shDAAO also blocked more than 30% spinal expression of GFAP, a biomarker for the activation of astrocytes. These results further suggest that down-regulation of spinal DAAO expression and enzymatic activity leads to analgesia with its mechanism potentially related to activation of astrocytes in the spinal cord.


Assuntos
Analgesia/métodos , D-Aminoácido Oxidase/antagonistas & inibidores , Dor/fisiopatologia , Medula Espinal/enzimologia , Animais , Astrócitos/enzimologia , Astrócitos/fisiologia , D-Aminoácido Oxidase/genética , Regulação para Baixo , Células Epiteliais/enzimologia , Formaldeído/farmacologia , Injeções Espinhais , Túbulos Renais/enzimologia , Masculino , Dor/induzido quimicamente , Dor/enzimologia , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Medula Espinal/fisiopatologia , Transgenes
12.
Biomaterials ; 32(11): 3124-33, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21277018

RESUMO

One of the key challenges in the development of RNA interference-based cancer therapy is the lack of an efficient delivery system for synthetic small interfering RNAs (siRNAs) that would enable efficient uptake by tumor cells and allow for significant knockdown of a target transcript in vivo. Here, we describe a micelleplex system based on an amphiphilic and cationic triblock copolymer, which can systemically deliver siRNA targeting the acid ceramidase (AC) gene for cancer therapy. This triblock copolymer, consisting of monomethoxy poly(ethylene glycol), poly(ε-caprolactone) and poly(2-aminoethyl ethylene phosphate), self-assembles into micellar nanoparticles (MNPs) in aqueous solution with an average diameter of 60 nm and a zeta potential of approximately 48 mV. The resulting micelleplex, formed by the interaction of MNPs and siRNA, was effectively internalized by BT474 breast cancer cells and siRNA was subsequently released, resulting in significant gene knockdown. This effect was demonstrated by significant down-regulation of luciferase expression in BT474-luciferase cells which stably express luciferase, and suppression of AC expression in BT474 cells at both the transcriptional and protein level, following delivery of specific siRNAs by the micelleplex. Furthermore, a micelleplex carrying siRNA targeting the AC (micelleplex(siAC)) gene was found to induce remarkable apoptosis and reduce the proliferation of cancer cells. Systemic delivery of micelleplex(siAC) significantly inhibited tumor growth in a BT474 xenograft murine model, with depressed expression of AC and no positive activation of the innate immune response, suggesting therapeutic promise for micelleplex siRNA delivery in cancer therapy.


Assuntos
Materiais Biocompatíveis/química , Neoplasias da Mama/terapia , Nanopartículas/química , Polímeros/química , RNA Interferente Pequeno/genética , Ceramidase Ácida/genética , Animais , Apoptose/genética , Western Blotting , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Nus , Micelas , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
ACS Nano ; 5(2): 1483-94, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21204585

RESUMO

Combination of two or more therapeutic strategies with different mechanisms can cooperatively prohibit cancer development. Combination of chemotherapy and small interfering RNA (siRNA)-based therapy represents an example of this approach. Hypothesizing that the chemotherapeutic drug and the siRNA should be simultaneously delivered to the same tumoral cell to exert their synergistic effect, the development of delivery systems that can efficiently encapsulate two drugs and successfully deliver payloads to targeted sites via systemic administration has proven to be challenging. Here, we demonstrate an innovative "two-in-one" micelleplex approach based on micellar nanoparticles of a biodegradable triblock copolymer poly(ethylene glycol)-b-poly(ε-caprolactone)-b-poly(2-aminoethyl ethylene phosphate) to systemically deliver the siRNA and chemotherapeutic drug. We show clear evidence that the micelleplex is capable of delivering siRNA and paclitaxel simultaneously to the same tumoral cells both in vitro and in vivo. We further demonstrate that systemic administration of the micelleplex carrying polo-like kinase 1 (Plk1) specific siRNA and paclitaxel can induce a synergistic tumor suppression effect in the MDA-MB-435s xenograft murine model, requiring a thousand-fold less paclitaxel than needed for paclitaxel monotherapy delivered by the micelleplex and without activation of the innate immune response or generation of carrier-associated toxicity.


Assuntos
Micelas , Neoplasias/genética , Neoplasias/metabolismo , Paclitaxel/metabolismo , Paclitaxel/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Animais , Sequência de Bases , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Sinergismo Farmacológico , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Nanopartículas/química , Neoplasias/patologia , Polímeros/química , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-Like
14.
Mol Pharm ; 8(1): 250-9, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21138272

RESUMO

MiRNAs are viable therapeutic targets for cancer therapy, but the targeted delivery of miRNA or its anti-miRNA antisense oligonucleotides (AMOs) remains a challenge. We report here a PEGylated LPH (liposome-polycation-hyaluronic acid) nanoparticle formulation modified with cyclic RGD peptide (cRGD) for specific and efficient delivery of AMO into endothelial cells, targeting α(v)ß3 integrin present on the tumor neovasculature. The nanoparticles effectively delivered anti-miR-296 AMO to the cytoplasm and downregulated the target miRNA in human umbilical vein endothelial cells (HUVECs), which further efficiently suppressed blood tube formulation and endothelial cell migration, owing to significant upregulation of hepatocyte growth factor-regulated tyrosine kinase substrate (HGS), whereas nanoparticles without cRGD modification showed only little AMO uptake and miRNA silencing activity. In vivo assessment of angiogenesis using Matrigel plug assay also demonstrated that cRGD modified LPH nanoparticles have potential for antiangiogenesis in miRNA therapeutics. With the delivery of anti-miR-296 AMO by targeted nanoparticles, significant decrease in microvessel formulation within Matrigel was achieved through suppressing the invasion of CD31-positive cells into Matrigel and prompting HGS expression in angiogenic endothelial cells.


Assuntos
MicroRNAs/genética , Nanopartículas/química , Oligonucleotídeos Antissenso/genética , Oligopeptídeos/química , Animais , Western Blotting , Linhagem Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Feminino , Humanos , Lipossomos/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Teóricos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
15.
J Nat Prod ; 73(2): 237-41, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20148526

RESUMO

Six new sesquiterpene lactones, scorzoaustriacoside (1), scorzoaustriacin (2), scorzoaustriacin 3-O-beta-d-glucoside (3), 4-epi-dihydroestafiatol (4), 14-isovaleroxyscorzoaustricin (5), and 14-isovaleroxyscorzoaustricin sulfate (6), along with five known guaianolides, were isolated from an acetone extract of the roots of Scorzonera austriaca. The structures of the new compounds were elucidated mainly by interpretation of their 1D and 2D NMR and HRMS data. Several isolates obtained in this investigation were evaluated against a small panel of cancer cell lines.


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Medicamentos de Ervas Chinesas/isolamento & purificação , Lactonas/isolamento & purificação , Scorzonera/química , Sesquiterpenos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Células K562 , Lactonas/química , Lactonas/farmacologia , Estrutura Molecular , Raízes de Plantas/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia
16.
Small ; 6(2): 239-46, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19924738

RESUMO

An efficient and safe delivery system for small interfering RNA (siRNA) is required for clinical application of RNA interfering therapeutics. Polyethyleneimine (PEI)-capped gold nanoparticles (AuNPs) are successfully manufactured using PEI as the reductant and stabilizer, which bind siRNA at an appropriate weight ratio by electrostatic interaction and result in well-dispersed nanoparticles with uniform structure and narrow size distribution. With siRNA binding, PEI-capped AuNPs induce more significant and enhanced reduction in targeted green fluorescent protein expression in MDA-MB-435s cells, though more internalized PEI/siRNA complexes in cells are evidenced by confocal laser scanning microscopy observation and fluorescence-activated cell sorting analyses. PEI-capped AuNPs/siRNA targeting endogenous cell-cycle kinase, an oncogene polo-like kinase 1 (PLK1), display significant gene expression knockdown and induce enhanced cell apoptosis, whereas it is not obvious when the cells are treated with PLK1 siRNA using PEI as the carrier. Without exhibiting cellular toxicity, PEI-capped AuNPs appear to be suitable as a potential carrier for intracellular siRNA delivery.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Polietilenoimina/química , RNA Interferente Pequeno/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Inativação Gênica/efeitos dos fármacos , Técnicas de Transferência de Genes , Ouro/toxicidade , Proteínas de Fluorescência Verde/metabolismo , Humanos , Nanopartículas Metálicas/toxicidade , Polietilenoimina/toxicidade , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Quinase 1 Polo-Like
17.
Bing Du Xue Bao ; 23(1): 22-7, 2007 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-17886716

RESUMO

To explore the anti-HSV-1 effect of silencing gD gene expression by RNA interference, five 21-nucleotide duplex small interfering RNAs(siRNAs) targeting the HSV1 gD sequence were designed and the gD-EGFP fusion gene expression vector was constructed, then co-transfected into Vero cell, and screened the effective siRNA through analyzing the intensity of the EGFP fluorescence. Finally, the anti-HSV1 effect was confirmed by plaque reduction assay, real-time PCR and daughter virus titration of HSV1 infected Vero cells transfected with siRNAs. The study demonstrated that siRNAs could effectively and specifically inhibit gD gene expression in HSV1-infected cells, but only had a little effect on HSV1 infection, so taking gD as the target of siRNA against HSV1 needs further study.


Assuntos
Herpesvirus Humano 1/genética , Interferência de RNA , Proteínas do Envelope Viral/genética , Animais , Chlorocebus aethiops , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Reação em Cadeia da Polimerase , RNA Interferente Pequeno/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Células Vero , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA